
AlAA 2002- 4058
I nteractive, Secure We b-ena bled
Aircraft Engine Simulation
Using XML Databinding Integration
Risheng Lin and Abdollah A. Afjeh
The University of Toledo
Toledo, Ohio

38th AlAAlASMElSAElASEE Joint Propulsion Conference & Exhibit

Indianapolis, Indiana
7 - 10 July 2002

For permission to copy or to republish, contact the copyright owner named on the first page.
For AIM-held copyright, write to A I M Permissions Department,

1801 Alexander Bell Drive, Suite 500, Reston, VA, 201914344.

INTERACTIVE, SECURE WEB-ENABLED AIRCRAFT ENGINE
SIMULATION USING XML DATABINDING INTEGRATION

Risheng Lin' and Xbdollah A. Afjeh'
The University of Toledo
7801 West Bancroft Street
Toledo. Ohio 13606. USA

ABSTRACT

This paper discusses the detailed design of an XML
databinding framework for aircraft engine simulation.
The framework provides an object interface to access
and use engine data. while at the same time preserving
the meaning of the original data. The Language
independent representation of engine component data
enables users to move around XML data using HTTP
through disparate networks. The application of this
framework is demonstrated via a web-based turbofan
propulsion system simulation using the World Wide
Web (WWW). A Java Servlet based web component
architecture is used for rendering XML engine data into
HTML format and dealing with input events from the
user, which allows users to interact with simulation data
from a web browser. The simulation data can also be
saved to a local disk for archiving or to restart the
simulation at a later time.

INTRODUCTION

Computer programs capable of simulating the
operation of aircraft engines are useful tools that can
help reduce the time, cost and risk of product design
and development and facilitate learning about the
complex interactions between jet engine components.
However, the strongly-coupled nature of the
components' flow physics and the large number of
operating and design parameters needed for simulation
of the aircraft engine system present a challenge to
developers who aim at designing an easy-to-use and
effective engine simulation program for users. Most of
the aircraft engine simulation software currently
available have limitations primarily in the presentation
of the simulation input and output data, due to the use
of text-based interfaces, and the lack of data validation
methods. As a result, engine simulation results could be
overwhelming and difficult to interpret without a

* Research Associate, Student Mcmber AIAA. Departmcnt of Mcchanicai.
Industrial and Manufacturing Enginccring. E-mail: rlin@cng.uroldo.cdu
t Professor and Chair, Departmcnt of Mechanical. Industrial and
Manufacturing Enginccring. Mcmbcr AIAA. E-mall: aafjch@cng.utolcdo cdu
Copyright 7 2002 by Rishcng Lin. Published by the Amcricon Institute of
Aeronautics and Astronautics, Inc., with permission.

significant effort. Moreover, traditional sirnulation data
are, in general, stored in proprietary data formats and
constrained by hardware and operating system platform
differences. Thus, developers are hicdered in their
efforts to synthesize simulation data in their design
unless a clearly defined and interoperable data interface
exists. The bottlenecks caused by iata handling,
heterogeneous computing enviroments and
geographically separated design teams. continue to
restrict the use of these tools [l] .

Web-based simulation, due to its accessibility,
convenience and emphasis on collaborative
composition of simulation models. distributed
heterogeneous execution, and dynarr-ic multimedia
documentation, has the potential to hriamentally alter
the practice of simulation [2] . Presentl?. :he majority of
work in web-based simulation has xntzred on re-
implementation of existing distributed 2nd standalone
simulation logics within Java Applets :?.-!I. Applets are
quite popular because they are suppocd by common
browsers and are safe to execute on ciient computers.
However. with the whole simulation c c 2 iight(v-bozind
to an Applet, it may take a long time for the rich engine
simulation code to load within a clierT's browser. In
addition, it is often not efficient to execute complicated
simulation logic at the client side. ivhere a high
performance computer is generally not available.
Applets' security model, arguably one si its strengths,
also creates obstacles for post-processiq of simulation
data beyond what applets provide since it inhibits
creation of data files on the host machine.

This paper describes a web-based sircraft engine
simulation system, called X-Jgrs. through dynamic
XML databinding framework which permits data
communication with ease. XML [5] . due to its
structured, platform and language independent, highly
extensible and web-enabled nature. has rapidly become
an emerging standard to represent data between diverse
applications. XML can represent both structured and
unstructured data, along with its rich descriptive
delimiters. By using XML to represent engine data in
high performance propulsion system simulation, it is
possible to faithfully model the structural elements of a
chosen component in an interoperable fashion that is
natural in their simulation context. Since HTTP (Hyper
Text Transfer Protocol) already s\pports transmission

1
American Institute of Aeronautics and Astronautics

of plain text, XML data can be moved around readily
using the HTTP through firewalls and disparate
networks. Engine databinding through XML also
provides simulation designers with a higher and more
user-friendly API to work with underlying engine
components repository and thus enables the
components to communicate with each other effectively.

ENGINE MODELS

This section provides an overview of engine analysis
model that is used in our web-based simulation. Also
presented is the designed engine data object model that
will be used in engine databinding framework.

Analysis Model
The mathematical model used to describe the

operation of the gas turbine system in the current work
is patterned after that presented in [6] . Here, the gas
turbine system is decomposed into its individual basic
components: inlet, compressor, combustor, turbine,
nozzle, bleed duct connecting duct, and connecting
shaft. Intercomponent mixing volumes are used to
connect two successive components as well as define
temperature and pressure at component boundaries.
Operation of each of the components is described by
the equations of aero-thermodynamics which are space-
averaged to provide a lumped parameter model for each
component. For dynamic (transient) gas turbine
operation, the model includes the unsteady equations
for fluid momentum in connecting ducts, inertia in
rotating shafts, and mass and energy storage in
intercomponent mixing volumes. A complete
description of the model can be found in [7].

Data Obiect Model
Based on the above engine analysis model, an

"Engine Data Object" (EDO) model was designed to
precisely define the intellectual content of engine
component data, including a complete definition of
engine data entities, attributes, relationships, and
specification of local and global constraints on these
entities.

In order to effectively represent simulation data
using XML, the engine system, shown in Figure l(a),
was first decomposed into individual basic components
in a strict hierarchical manner in accordance with the
XML topology. A set of data structures is then built in
parallel with each engine component. An overall layout
of a simplified data model is summarized in Figure l(b).
Each node in the model shown here is represented as an
engine data object. The figure also indicates (informally)
what data, if any, are encapsulated within each node
object. For example, the N o d e data object shown in
Figure l(c) gives information about a particular

converging-diverging or converging-only nozzle in an
engine simulation. The user-defined parameters of a
nozzle includc a set of nozzle design point data and
nozzle initial operating data, such as mass flow rate,
throat area, exit area. gross thrust. etc. Consequently,
these data are designcd as subchildren data objects in
Nozzle. In addition. the nozzle throat and exit areas may
be adjusted during the transient by a user-defined
schedule; ThroatAreaTransienrControllers and
E.rit..lreaTransientControllers are designed for this

ConholVoluen

- Duct - EleedCwlCmp

r Cornburtor - Tuhne

L SloleduarrDuct

- BleedOuct
- BleedcwlT*rbloc

- shin
- Noule

- RotorShri?

(b)
,i_.
:'Descriptor a

NozzleOesignPointDaia -

. .

4 i NozzleSolutionDais @
(C)

Figure 1 (a) decomposition of engine component; (b)
hierarchical engine data object model; (c) subchildren
objects inside nozzle data object

2
American Institute of Aeronautics and Astronautics

purpose. Lh-IeSolution object is used to store the
solution datasets after a simulation, which itself
contains other children data objects that are not shown
here. An optional Descriptor object can also be
included to describe nozzle operating status.

ESCINE DATABINDING FRAMEWORK

Based on our data object model design. an Engine
Data Binding (EDB) Framework has been implemented
in Java to facilitate binding an engine data object into a
data entity in XML-based engine data file. The
framework makes it easy to convert between the engine
data stored in XML file and their object representations,
and facilitates the applications to access, modify and
store any engine component data object. Figure 2 gives
a schematic representation of all components in engine
databinding framework. Engine databinding framework
can also be run as a standalone application [8].

Engine Schema
Engine schema establishes a bridge between XML-

based engine data and its data object model. It
associates each piece of the information defined in the
data object model to a precise location in the XML
structure. .A set of engine schemas have been designed
using X\lL Schema language [9] that specifies how the
constituents of the engine data objects are mapped to an
underlying XML-based engine data structure. The rules
in the data model will guarantee that the schema
description of engine data is syntactically correct and
also folloivs the grammar defined within it.

Figure 3 shows a sample schema representation for
the .Voz:!e and one of its children, TransientController,
which is used to supply transient control parameters for
throat and exit areas. Based on the Nozzle data model

shown in Figure l(c), the “Nozzle” schema defines all
the data elements that are contained in a single nozzle
data object. These elements are constrained by their
corresponding complexTypes and simpleTypes and
encapsulated in the ~Vozzle object. For example.
.VozzleDesi,SriPointDclltr defines all its permitted data
variables. such as ,Clas.sFloivRuie, ThroatArea etc, and
their corresponding data types. which are built-in
double type. Also note that in the above Nozzle schema
only ,VozleDesignPointData element is explicitly
defined, the rest of its element definitions use the “ref’
attribute to tell the data parser in the engine simulation
that the definition for these elements are defined in
other schema files with the same target namespace (Le,
the default “engine” namespace in Fig.3) as nozzle.
These ‘ref ed schema will be automatically included by
schema parser during the run time. This kind of flexible
design will guarantee that all the basic schema types
can be reused. Moreover. it will allow for modular
development and easy modification of engine schema
as engine data object model evolves in the future.

Schema Compiler
The engine schema compiler is designed to map an

instance of an engine schema into the appropriate
engine data object model. It aziiomatically translates an
engine-specific schema into a set of derived engine data
object models (set of classes and types which represent
the data) with appropriate access and mutation (Le., get
and set) methods that can be used to affect the
underlying engine data files. Figure 4 shows an
example of how a generated class should correspond to
the nozzle schema defined in the previous section. With
the “Nozzle” schema defined. attributes are “compiled”
into simple Java types, usually primitives; element
(along with its type information which specifies the
conten t model) becomes engine da ta class, with

Engine Data Model

Engine Schema

I ,

Figure 2. Engine databinding framework

3
American Institute of Aeronautics and Astronautics

' y - , e r s G - j ' s ;'-s

sa scnema !arge!Naresoace=

:.,eng ne' eie.rentForrrDefajl:="qr;ai,fiec' vemn:" 2')
r = TransientController xsd":> cxsd include s

<xsd-include s r = 'Descriptor.xsd":>

Cxsd complexType name='Voule-t">
<xsd.sequence>

<xsd element name='DescnptoC type="Descnptor-t" rninOccurs=*O"'>
<xsd element name='NouleDesignPoinfData">

Cxsd cornplexT,pe>
<xsd'aUr:cute name="MassFlowRate" type="xsd:double"P
cxsd.an: cute name="ThroatArea" type="xsd:double" >
cxsd anrcute name="ExitArea" type="xsd:double"i>
Cxsd anntute name="DragCoefficient" type="xsd:double"b
<xsd .an rn te name="VelocityCoefcient" type="xsd:double"l>
<xsd-anrcute name="GrossThrust" type="xsd:double"'>

4 x s d cornplexTjpe>
<ixsd:element>
<I-- NozzlelnitralC,-s~~ringDala element IS simiianly oesigned

and ommilfez -$'e 'or simplicity-->
<xsd'element name= ThroatAreaTransCntl"

type='TransientCntI-t"b
<xsd.element name='ExitAreaTransCntl"

type='TransientCntl-t"l>
<!-AN NorzieSc'; 7-Dara elements and ornmitted ior s !~p l iC ! r j ' - -~

</xsd'sequence>
<xsd'attribute name='Vame" type="xsd.string" use="requiredl>

<lxsd.complexType>
lxsd schema>

'xml version=": C"7s
csd'schema xmlns xsd="hnp ."ww.w3.org/2001/XMLSchema"

elementForrnDeiault="quairfied" version="l .O">

< I - - TransierirCor:rroils~ r r -oexType -->
<xsd:complexType narre= TransientCntl-t">

<xsdsequence>
<xsd elemerr -ame="TimeArray" type="doubleDatalist"i>
<xsd elemer l -ame="ValueArray" type="doubIeDatalist":>

4 x s d sequence>
<xsd:attribute nane='name' type="xsd:string" use="optional"i>

<lxsd.complexType>

<xsd,simpleType name='$oubleDatalist">

<Ixsd:simpleType>
<xsd:list itemType='xsd:double'*l>

xsd-schema>

I- all the Java -,port statements here

iublic class F:cu:e implements java.io Senalizable {
private Str1r.G _lame;
pnvate Cescrstor descriptor;
private Ces,q?ointData _nouleDesignPointCa':
pnvate In!tC:eratingData _noulelnit05eratingC3ia;
pnvate Thrca~kaTransCntl -throatAreaTransCn:l:
pnvate ExitAreaTransCntl _exitAreaTransCntl:
pnvate NozzeSolutionData -nouleSolbtionData.

public Nowe!) (
super();

public StnnG setName() (
return this -name;

1

1

public void serName(Stnng name) (
this.-nar;e =name;

public ExitAreaTransCntl getExitAreaTransCntlli {

i
return in's -exiIAreaTransCntl;

public doid setExitAreaTransCntl(ExitAreaTransCntl exitAreaTransCntl) (

1
:his _exitAreaTransCntl = exitAreairansCntl,

I / - the same .wth ail other rypes and are ornineo here

public woiean validate()
throws ~ngineValidationExceprion {
i

'lalidator validator = new Validatori;:
ialidator.validate(this);)

catch iE'SineValidationException vex) {
rer.:n ialse:

return :?de;

1
puolic VO!G -arshalfiava.io.Writer out)

thrcws MarshalException, EngineValida:,onException (
Marsha,,er marshal(this. out);

}
public sta:c houle bnmarshalijava.~o.i?eader ?eader)

!hrows LlarshalExcepfion. EngineVa1ida;onExceDtion {
return i~uouie)Unmarshaller.unmarshal(Nou.e.class, xader):

!

Figure 3. Engine schema representation of Nozzle and
TransientControl data object model

Figure 4. Yozzle data class generated by schema
compiler process

generated data types and properties encapsulated in it.
The generated class provides pairs of accessor (get) and
mutator (set) methods for all the properties defined in

objects automatically. These are achieved through an
underlying Marshalling Framework design.

engine schema, which closely follows the JavaBean
Design Pattern [101.

In addition, the engine schema compiler can
generate the data 'validation' class code so as to
enforce the constraints expressed in the schema. The
code generated by the valid schema translation will
check that incoming engine data files are 'legal' with
respect to the constraints defined in schema, thereby
ensuring that only valid XML-based engine data files
are produced by the marshalling process.

The generated Java classes also include a set of
marshal, and iinmarshal methods that can be used to
"translate" engine application data f r o d t o engine data

Marshalling Framework
The marshalling framework supports the

transportation (immarshal) of XML-based engine data
into "graphs" of interrelated instances of objects that
are generated by engine schema complier and, in
addition, converting (marshal) such graphs back into
engine data stored in XML documents. The marshal
method works by taking a desired Writer object as
argument and then returning an XML element
representation of that object. If the object contains
references to other engine data objects, then recursion
can be used. using the same method. The same applies
to unmarshaling process where a general Reader is

4
American Institute of Aeronautics and Astronautics

used. When the engine data are correctly unmarshakd,
each element node in the XML file becomes an instance
of the data class that was generated by engine schema
compiler, i.e. engine data object. Then. the engine
simulation components can use the corresporiding
methods, along with a set of miitator and occesor
methods, to work with the engine data in the underlying
data file. The end result is engine data binding.

SIMULATION ARCHITECTURE

X-Jgts is a web-based. interactive, graphical,
numerical gas turbine simulator which can be used for
the quick, efficient construction and analysis of
arbitrary gas turbine systems. It also provides a
systematic, meaningful data presentation and secured
data operation scheme with the support of a built-in
data binding framework. Figure 5 illustrates the overall
simulation architecture described in this paper, as well
as its major components and the interactions between
web client and simulation server.

Web Client
In X-Jgts system, the client user interface is

delivered through a web browser. The web browser is a
universal user interface that is responsible for
presenting engine simulation data, issuing requests to
the simulation web sener. and handling any results
generated at the request of the user. X-Jgrs uses both
dynamically generated HTML and Swing-based Java
Applet to properly present user-friendly data; in
particular, HTML is used to display simulation results,

while Swing-based Applet is used for graphic data
display. The platform-independent nature of HTML and
Java Applet enables the mgine simulation to be widely
conducted from heterogeneous, networked computers.

A s a general rule for web-based simulation,
application logic should not be implemented on the
browser. Complex simulation logics that are tightly
built into Applets are normally inefficient to execute
due to the fact that client side users generally lack
powerful computing resource. In addition, it may take
quite a long time for a client’s browser to load.
Therefore, the browser. HTML, and Swing Applets
designed in X-Jgts are used strictly for delivering the
user interface and view into the engine simulation. The
user requests are made either from the front-end Applet
or HTML code to perform designate tasks remotely in
the simulation web sener.

Simulation Server
Engine simulation sener is a dynamic extension of

a Web server and the heart of any web interactions. It
uses HTTP as protocol for communication and consists
of static resources, such as the front end simulation
Applet, as well as dynamic web pages (HTML) that are
generated by different mgine web components hosted
in the server. The wzb server listens for incoming
requests and then senices the requests as they come in.
Once the server receiles a simulation request, it then
springs into action. Depending on the type of request,
the web server might look for a web page, or execute a
web component on the si!n er. Either lvay, it will return
some kind of results to the web client.

In X-Jgts, engine web components are sets o f

Engine
Simulation
Computing

Databinding I Engine I Result

Conf.

Downloa
Data

Figure 5. Web-based simulation architecture in X-Jgts

5
American Institute of Aeronautics and Astronautics

simulation task-related Servlets [1 11 or JavaSevsr Pages
[I ?] . ServletiJSP provides a platform-independent
means of extending a web server’s capabilities. When a
user issues a request for a specitic Servlet. the server
will simply use a separate thread and then process the
individual request. This has a positive impact on
performance.

Engine web components are running in the Tomcat
[I33 Web container to dynamically process various
simulation requests and construct responses. The web
container provides services such as request dispatching,
security, concurrency, and life-cycle management.
Based on different task-related services, engine web
components may invoke other web resources directly
through embedded URLs that point to other web
components while it is executing. or indirectly by
forwarding a request to another resource using
RequestDispatcher. There are four main services
currently available in the engine simulation server.

Simulation Web Component
Engine simulation service is a core web component

that provides a transient, space-averaged. aero- and
thermo-dynamic gas turbine analysis for a web client
based on the engine analysis model. Besides that, the
simulation web component includes the built-in engine
databinding support and an underlying XML-based
engine database repository to store simulation data
(Figure 5). During the engine simulation, the
verification logics that are automatically generated by
engine schema compiler can be applied inside the
simulation so that the users’ inputs and simulation
outputs could be checked. Engine components can also
conveniently manipulate the engine data with a set of
accessor and mutator methods devised from
databinding framework. When a simulation completes,
engine components can readily marshal sets of engine
object data into the underlying data repository for
storage and unmarshal them back to engine data objects
later when data manipulation is necessary. This feature
gives a very useful and natural n-ay for the storage of
any engine data object and provides the engine
simulation with unambiguous. meaningful and
interpretable representation of engine data sets. The
engine simulation service can also generate simulation
graphs and transcript data dynamically and send them
to the front-end Applet for display.

File Download Web Component
X-Jgts allows users to save their simulation results

to the local file system so that users can redisplay their
simulation result or restart simulation at a later time.
This is achieved internally by the file-download service.
Due to security reasons. current web browsers prohibit
the front-end simulation Applet from directly writing
data files on the host that is executing it. Nevertheless,

Applets can usually make nenvork connections to the
host they came from. In X - J ~ K . whenever a user wants
to download a complete sixulation result or engine
configuration file, the front-snd Applet will make a
request to tile-download semice resided on the
simulation web server, loczrc the corresponding case
file from database repositon- and then generate a
download response to the ujsr. By setting the HTTP
Con t e n t - Di s p o s L t 1s” response header as
attachment, Web browser at 2lient side will pop up a
”save as” box to let user save simulation result.

File Upload Feb Comuonent
At times users have a requirement to upload a file

from their local file system to the web server for display
of engine simulation resulr in a more meaningful
way. X-Jgts web components include a Servlet that can
receive a file upload using its input stream. When a file
is sent via a browser, it is exbedded in a single POST
request with multipart/form-data [141 encoding type.
The file upload Servlet .rsill rake in the part of this
multipart data stream, reassexbled and encoded on the
server, and then dispatch rhe processing results to
display service, where dyczmically generated engine
data file in HTML format a x sent to client’s browser
for display.

Displav Web Component
Since engine data are stored in XML file format. it is

easier to apply certain transfarmation logic such that
simulation results can be dis3layed in a more friendly
way within the user’s bron 527. XSLT [I j] provides a
way to transform the engine Sata without cluttering up
the web components code ivith HTML. When the
simulation server receives ii Lisplay request, the build-
in XSLT processor kno\\j how to parse engine
component-specific XSLT style sheets and apply
transformations. Best of all. 3. clean separation between
engine data, presentation, acd simulation logic allows
changes to be made to the look and feel of a web site
without altering the simulation code. Because XML-
based engine data can b t transformed into many
different formats, it can also achieve portability across a
variety of browsers and other devices.

DEMONSTR-\TTON

Based on the designed data object model,
databinding architecture. ana simulation architecture, a
web-based engine simulation has been implemented
that internally uses Onyx [161 as the engine simulation
logic. Onyx is an objecr-oriented framework for
propulsion system simulation. Figure 6 shows the
XML-based Java Gas Turbine Simulator, X-Jgrs, being
accessed from an Internet Explorer browser.

6
American Institute of Aeronautics and Astronautics

Figure 6 . XML-based Java Gas Turbine Simulator accessed from a Web bro\vs::

For practical purposes, X-Jgts currently provides
users with 3 different kinds of simulation services. A
simulation identifier (ID) is required to perfom each
service.

Start a new simulation
A user can use this choice to start a new engine

simulation in interactive construction mode. After the
user enters a simulation ID, and starts to perform the
simulation, the Swing-based Applet interface (Figure 6)
will appear. From there the user can access the various
main windows of the simulation system: Engine
Schematic Layout, System Control Dialog, Graphing,
Transcript, or Save User Case.

Before each simulation is run, the user must provide
each individual engine component with initial
simulation configuration data from the designed Engine
Schematic Layout Dialog (see Figure 7). An engine
model is developed by building an engine component

schematic graphically as Icons (e.g.. BktdDuct, Nozzle,
VariableCompressor. etc.) and connecting them
together. In the diagram, the arrowhesded connecting
lines represent both the directional t'lon- path for fluid
through the engine, and the structural connections along
which mechanical energy is transmitted. The user can
define the operational characteristics for the component
(i.e., the component name, design- and initial-operating
point data, etc.) in the engine component's dialog
window (Figure 8). The $.stern Contrai Dialog (Figure
9) provides controls for the overall operation of the
simulation. The steady-state numerical solver is used to
balance the gas turbine equations at the initial operating
point as was defined by the user: while transient solvers
are used for dynamic engine perforniance analysis.
When the necessary data input for simulation
configuration is finished, the simulation can have the
option to start simulation immediately or download the
configuration file and run it later.

7
American Institute of Aeronautics and Astronautics

Figure 7. Engine schematic layout dialog

Figure 8. Dialogs used to set engine component (Nozzle) operational characteristics

Figure 9. Engine simulation system control dialog

8
American Institute of Aeronautics and Astronautics

Figure 10. Graphically display engine component parameters

Once a simulation begins, the engine configuration
data will be encoded in XML format and sent over the
Internet to the web simulation server. When the server
receives the engine configuration file, it then
automatically dispatches the file to the simulation web
component. where engine databinding and simulation
logic are performed. At the same time, the user can
select from Graph Control Dialog (Figure 10) to plot a
number of specified parameters for any of the
components currently displayed in the Engine
Schematic Layout window. The user may also view
simulation status reports, using the Transcript button
shown in Figure 6, that are sent from simulation web
server during the simulation. Once the simulation is
completed, the simulation web component will marshal
all engine data objects into an engine data file
designated by its simulation ID, and store it into the
database repository. Finally, the user can use Save
User Case button to download the complete solution of
the simulation case for later use.

Rerun simulation from an existing file
X-Jgts also provides a service for users to directly

input engine simulation configurations from a file,
which allows bypassing the engine construction
procedures. Part of a sample configuration file is shown
in Figure 11. When a user uploads the configuration file
from a web browser (Figure 6), all the defined
simulation parameters will be immediately available
from Engine Schematic Layout Dialog and System
Control Dialog. Users can then use User cases menu in
Engine Schematic Layout to verify these configurations.
Users can also edit these data using the above two
dialogs. In this case, the updated configuration file will
be sent to the server to run the simulation.

Show existing simulation data results
If a user has finished an engine simulation case and

saved the simulation data using X-Jgts, heishe can later
redisplay the simulation results in a web browser with a
more meaningful data presentation scheme using this

service. In this case, when the web simulation server
receives an engine simulation case file uploaded from
the user's web browser (Figure 6), it will internally use
Displaj. Web Component (combined with sets of pre-
designed XSLT style sheets) to dynamically generate
HTML code for display within the user's browser.
Figure 12 shows the nozzle data file from an example
simulation case. The user can choose different engine
components to display from the drop-down list at the
top of the web page.

<S:eaayStateSolver SioverNane. NewtoniiarisonSolve<
ErorToierance- '5.OE-i ~Cswer~e*ceRate="0.7"
literal1onToFa1lure="50 2eV':rsa: e-3 ze='O 25
LowerPacfalLlr,:='O 001C' 1;me+-a L ~ I F " O 01"')

ErrorToierance='5 OEd ' C~iv_e.gecceRale="O 7"
In:erat,onToFali~re='50' 2e:al r e . : 2'
FinaIT.,re='Z 0 Pend?a:oaSlze=': 25
LowerPan8aiL.mli='0 001C LisxrFar afL,mlt="O.O1" :>

<Connector :mm= Envimnmeni' :o= LPC' rieeaback="false',>
<Connector frorr='LPC' :o='MVl3' sFeeoack="alse':>
<Connector f,om="MV13" to= 'HPC' sFeemack="false'l>
<I-. 3her connectors are defrreo 10 a s r a' vannar -->

<TpansfeniSoiver S:overName= I-~ovecE. e'

<Connec:on>

<,Connec!on>
I- Conf.guration,
+qneMoaeP

<Comwnents>
<'-only Nozzle is illustrateo "ere the s3re wnh all other cornpnenrs ->
<NonSource,

CNonRatator,
CNozzie Name=~Nozzle">

<NozzleDesignPointDala Masr i owRa!e="195.0"
TiroatArea-"430 0 Ex:Area='492.0" OragCoefheni="O 952
VelocltyCoeffc ew'0.98' G~ossThrus1-''9400 O?>

<'-lhe same with Noznelni!F-.~fDafa-~
<ThroatAreaTransienlontml,en qame=7hmat Area Transient Contmller"

<T,meArray> 0 0 10 0 13 C < TmeArray,
'VaiueAnay, 430 0 430 0 EiC 0 <,'ValueArray>

<I- :he same Nifh ix ; tArea~a~~ientContmi lers ->
'ThroatAreaTransienConuo eo>

<,Nozzle>
<,NonRatalw>

<,NonSource>
<.Comwnents

c EngineMwei>
EPgineBase,

EngineRooP

Figure 11. Engine simulation configuration file
specified in XML file format

9
American Institute of Aeronautics and Astronautics

X-JGTS Simulation Data View

1-m
. . . ~ _ _

1’3s 0 430 0 492 0 J ?52

N o z z l e l r n t k l l O p e r a t d t a

-mw#m
430 0 492 0

Throat Area Transtent Controller Exit Area Transient Controller

0.0 430.0

10.0 430.0

13.0 660.0

0.0

10.0

13 0

492 0

492.0

880.0

430 0000 ‘52 X O 0.9564 0 8897 0 0000 1921 3: 100 3765 0 00000000

Trdnsient S ta te Sdutm Data BmwB
OoooO 430CoC; 4 9 2 W 09564 0 E097 0 0000 192: 31 io0 3765 C OOJOMOC

oim 43oca: 4920003 09554 0 E872 0 ooco 1922 3 io: 404: c wocmnc
o:om 43ocit; w o o 0 0 cs37 0 iB43 0 ooco 2125 23 ;m 4554 5 oo0cmoc
03oOo 430cOCj 492oooO 09534 0 E843 0 0000 22% 23 :03 4b77 c MOOOOOC

I

4 Done ;i3 MY ComDuter

Figure 12. Nozzle simulation data displayed within a user’s web browser

COXCLUSION

In this work, an XML-based dynamic databinding
framework for use in engine simulation has been
discussed. By dynamic data binding, the framework
provides an object interface to access and use engine
data, transparently mapping simulation data in engine
components as engine data objects. The framework also
enables the separation of engine simulation logic from
its persistence logic. such that the engine simulation
codes and the underlying data persistence codes can be
developed independently.

Since engine component data in the binding process
are stored in an XML document, they not only bypass
the requirement to have a standard binary encoding or
storage format, but also provide the meaning of the data
through its tag representation. Furthermore, it is
completely natural to move around XML engine data
using HTTP through disparate networks.

This paper also describes a Web-based engine
simulation system, X-Jgfs, which internally uses engine

databinding framework. The simulation system couples
a front-end graphical user interface. developed using
the Java Swing API, and various Java Servlet-based
web components from engine simulation server to
service user’s requests. The designed web components
include remote simulation service, dynamic data
display service in HTML format. and file download and
upload services which allow a user to save data for later
use in a more secure way. All these services are readily
available via the built-in databinding framework
support and the use of XML to describe engine data.
The combined package provides analytical, graphical
and data management tools which allow users to
construct and control dynamic gas turbine simulations
by manipulating graphical objects from a variety of
heterogeneous computer platforms through the use of
Java-enabled world-wide web browsers.

The method developed in this paper is generic and
may readily be used for other simulation applications
requiring intensive data exchange. Using this approach,
developers are enabled to design better aircraft engine

10
American Institute of Aeronautics and Astronautics

simulation codes via
data representation
validation method.

a systematic and more iiicaiiingh[[151 XSL Transformation W3C Recommendation version 1.0.

[161 Reed, J.A.. 1998. "Onyx: A n Object-Oriented Framework
for Computational Simulation of Gas Turbine Systems."
Ph.D. Dissertation. The Cniversity of Toledo

scheme and a built-in data. November. 1999. hiiu: v.\\\\ .i.v3.orc TR.'xslt,

ACKSON'LEDGM ENTS

The authors gratefully acknoxvledge partial financial
support from NASA Grant NAG-1-2234 under the
direction of Mr. Wayne K. Gerdes, NASA Langley
Research Center. They also n.ould like to express their
appreciation to Dr. John A. Reed, the University of
Toledo, for providing parts of 0nJ.K [I61 simulation
code to test this work.

REFERESCE

Reed, J. A,, Follen. G. J. and Atjeh. A. A,, Improving the
Aircraft Design Process using Web-based Modeling and
Simulation, ACM Transactions on Modeling and
Computer Simulation. Vol. 10. KO. 1.2000, pp. 58-S3
Fishwick, P. A,. Hill. D. R. C. and Smith. R., Eds.,
Proceedings of the I558 International Conference on
Web-Based Modeling and Simulation. SCS Simulation
Series, Vol. 30. (1998).
Reed, J. A. and Xfjeh. A. A,. d Java-based Interactive
Graphical Gas Turbine Propulsion S w e m Sirnzilator,
AIAA paper 97-0233. 35th .\erospace Sciences Meeting
and Exhibit. Reno h T
EngineSim Beta Version l . ib. NASA Glenn Learning
Technologies Project. hnp: n\% w . _ e r c . n a s a . g o v ' w \ ~ ~ V ~ K -
I Z/airplaneinpsim.hrml
Extensible Markup Language (XML) 1 .O. lV3C
Recommendation. Feb. 1993
Daniele, C . J., Krosel. S. M.. Szuch. J. R., and
Westerkamp, E. J.. "Dig:tal Computer Program for
Generating Dynamic Engine Models (DIGTEM)."

Reed, J. A., "Development of an interactive graphical
propulsion system simulator." Master of Science Thesis,
The University of Toledo. Toledo. Ohio, August 1993.
Lin, R. and Afieh, A. .i.. .-1 Diwamic Data Binding
Framework for High Pz$ormance Object-Oriented
Propulsion Svstem Similarion, 2002 Advanced
Simulation Technologies Conference. High Performance
Computing Symposium. April 2002
"XML Schema Part 0: Primer. W3C Recommendation,"
2 May 2001. http:!iww\v.\\3,org/TIUxmlschema-0

NASA TM-83446. 1983.

[I O] Watson, M., "Creating Java Beans: Components for
Distributed Applications." Morgon Kaufmann
Publishers, Sept. 1997

[1 I] Sun Microsoft System. Jat a Servlet Specification at:
httu://iava.stm.com nrodiic:s servlet index.html

[121 Sun Microsoft System. Java Server Page Specification
at: httu::'iava.sun.com m x i x i s , isp index.html

[I 31 The Jakarta Project at: http: jakarta.apache.org
[I41 File Upload Specification RFC1867

http:!./www.ietf.orc rfc ric I867.txt

11
American Institute of Aeronautics and Astronautics

